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B0 if P is clearly singular 
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Evaluating integral (may have 
∞  as upper limit) 
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2606 - Pure Mathematics 6 
 
General Comments  
 
The performance on this paper was generally good; about one third of the candidates 
scored 50 marks or more (out of 60). However, there was a wide range, and about 20% 
of the candidates scored fewer than 30 marks. Almost all candidates appeared to have 
sufficient time to complete the paper. Over half the candidates chose questions 1, 3 and 
4; other popular combinations were questions 1, 3 and 5, questions 1, 2 and 3, and 
questions 2, 3 and 4. Very few candidates attempted more than the three questions 
required. 
 
 
Comments on Individual Questions 
 
1) Matrices 
 
 This question was attempted by most candidates, and it was answered well. The  

average mark was about 15 (out of 20), and about 20% of the attempts scored full 
marks. 

 In parts (i) and (ii), the concepts of eigenvalues and eigenvectors were well 
understood, and the work was often carried out accurately. A common 
misconception was to give  as an eigenvector corresponding to the 
eigenvalue 0. 

)0,0,0(

In part (iii), most candidates knew that P has the eigenvectors as its columns, but 
the diagonal matrix M was very often given wrongly, usually with the eigenvalues 
not raised to the fourth power. 
In parts (iv) and (v), the use of the Cayley-Hamilton theorem was very well 
understood. 

 
2) Limiting Processes 
 
 This question was attempted by about a quarter of the candidates, and the average 

mark was about 12. 
 Part (a) was generally answered well, although the derivative of  was 

quite often given as 
)2G()G( −x

)2(G)(G ′−′ x . 
 In part (b)(i), most candidates drew rectangles of width 1, and fully correct 

explanations were quite common. Some were not sufficiently precise in 
specifying which set of rectangles were being considered for each inequality, and 
some did not mention that the definite integrals give the area under the curve. 
In part (b)(ii), most candidates found the bounds correctly by evaluating infinite 
integrals, although the deduction that the series is convergent was often not made. 
 In part (b)(iii), many candidates did not realise that the series should be split as 

∑∑
∞

==

+
61

2

60

1
2

11
rr rr

 ; those who did were usually able to use the previous result to 
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obtain bounds for ∑
∞

=1
2

1
r r

. However, very few candidates appreciated that the 

given value of 1.6284 (correct to 4 decimal places) implied a true value between 
1.62835 and 1.62845. 

 
3) Multi-variable Calculus 
 
 This question was attempted by almost every candidate, and it was the best 

answered question. The average mark was about 15, and about a quarter of the 
attempts scored full marks. 

 Parts (i), (ii) and (iii) were very often answered correctly, although the z-
coordinates of the stationary points were sometimes omitted. 

 In part (iv), most candidates tried to solve 0=
∂
∂
x
z  and 27=

∂
∂
y
z , and many 

obtained the correct values of k, although careless errors were much more 
frequent here than in the earlier parts of the question. 

 
4) Differential Geometry 
 
 This question was attempted by about two thirds of the candidates, and the 

average mark was about 13. 
 In part (a), the arc length was usually found correctly. 
 In part (b), many candidates were unable to write down an integral giving the 

surface area. Those who did usually went on to make the substitution 
a
xu cos2= , 

but the change of limits was not always carried out correctly. 
 In part (c), the principles for finding the radius and centre of curvature were well 

understood, although the work was often spoilt by minor errors in differentiation 
and sign errors. 

 
5) Abstract Algebra 
 
 This question was attempted by less than a quarter of the candidates. It was the 

worst answered question with an average mark of about 11. 
 In part (a), the inverses and orders of the elements were usually given correctly. 

Most candidates gave some of the subgroups, but the list was not often complete. 
In part (b)(i), most candidates gave a satisfactory definition for a basis of a vector 
space, but parts (b)(ii) and (b)(iii) were rarely seriously attempted. 
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